Reconfigurable Sensors

For Satellites, Landers, and Rovers

Tiny Modules Needed

- Light weight
- Low power consumption
- Extreme environment (temperature, shock, radiation)
- Sometimes must sacrifice to get the above

Two Approaches

- Reconfigurable
 - Examples
 - Computers
 - Field Programmable Gate Arrays
- Specialized one-off design
 - Motivation
 - Extreme simplicity or optimized for the problem

Why Reconfigurable?

- Reuse and Economies of Scale
 - Multiple sensors with the same core physical design can perform different functions
 - Reuse "software" (both computer code and VHDL) on next generation chips
- Shorten time to launch, reduce unrecoverable design errors, reduce cost
 - Change VHDL and software, not hardware
 - Hardware design and testing cycle partially done
 - Software partially done and tested
 - Can update on orbit if necessary
- Change personality of satellites and sensors
 - Same satellite hardware can have multiple functions and support multiple missions

Why not reconfigurable?

- Reconfigurability may
 - Increase complexity
 - Reduce reliability
 - More prone to human error
 - Parts with smaller features = increased failures
 - Not all parts may be sufficiently radiation resistant
 - Increase power consumption over custom ASICs
- We don't do it that way

Types of Tiny Modules

- Power (solar power, storage, conversion, high peak power)
- Attitude and acceleration sensors
 - Both absolute attitude and rate
- Attitude control
- Re-entry and landing systems
- Computers
 - Control, random logic
- Reconfigurable Radios
 - Data and control, variable rates and power
 - Beacon, navigation, and radar modes
- Location and velocity sensors
- Micro-mechanical devices
 - Windshield wipers (solar array and optics cleaners)
 - Actuators to deploy or point (solar arrays, radio antennas, sensor arrays)
 - Actuators to control valves (release gas, control fluid circulation, etc.)

More Types of Tiny Modules

- Environment sensors
 - Pressure, temperature, humidity, etc.
 - Wind sensors
 - IR-UV spectrometers
 - Imaging cameras
 - Neutron detectors
 - Gamma ray detectors
 - Magnetometer
 - Seismometer
 - Acoustic sensor
 - Trace gas sensors
 - Mass spectrometers
 - Scatterometers
 - Chemical analysis
 - Dielectric constant
 - And many other scientific measurements

Example of Satellite Modules As Seen by a Radio Guy

Example: Floating Atmospheric Sensor

Deployed on Earth

- Phase 1...balloon launched from surface with instruments recovered by glider
- Phase 2...balloon deployed from tiny re-entry system
- Data collection, tracking, and control initially performed from ground, eventually from satellites

Deployed on Mars

- Balloons deployed from tiny re-entry system
- Data collection, tracking, and control performed from satellites in Mars orbit

Floating Sensor Package

Floater at Mars or Other world

Floater Measurement Possibilities

- Attitude sensor
 - Perhaps gravity plus sun angle
- Location sensor
 - Orbital beacon tracker
 - Terrain camera
 - Radio altimeter
- Velocity sensor
 - Multiple pictures
 - Doppler radar
- Atmospheric measurements
 - Pressure, temperature, trace gases (like humidity)
 - Turbulence and shear
 - · Accelerometers and angular accelerometers
 - · Gyros and rate gyros
- Surface measurements
 - Neutron, UV, IR, etc. sensors
- Other
 - Sound and infrasound.
 - Low frequency radio static

Floater Issues

- Constraints
 - Weight of package
 - Need small for re-entry and to be lifted by balloon
 - Power consumption
 - Solar cells, weak sun, night, and dust cause problems
- Different
 - Thermal control
- Not so difficult
 - Radiation
 - Attitude control

IDEAS

- Lightning (or similar static)
 - Angle of arrival
 - Multi-satellite Time-difference of arrival
 - Trigger visual image capture
- Astronomical measurements in conjunction with ground antenna
 - Method
 - Line aperture synthesis together with TDOA of relatively strong sources
 - Objects
 - Jupiter at ~21 MHz
 - Solar flares
 - Pulsars
- Astronomical measurement with single satellite AOA
 - Transient phenomena below 1 MHz.
- Astronomical measurements with satellite constellation (possibly tethered and spinning)
 - Radio image phenomena below 10 MHz.

More Ideas

- Occultation measurements for atmospheric sensing
- Dielectric constant measurement

Even More Ideas

- Survey and locate earth-based radio pollution
 - Radio astronomy bands
 - Unlicensed bands (e.g. 2.4 and 5 GHz)
 - GPS band
- Additional element in Search and Rescue
 - 121.5, 243, and 401 MHz. perhaps with onboard processing.
- Ionospheric measurements
 - Perhaps in conjunction with Transit satellites (150 and 400 MHz) if they still exist
 - Perhaps using GPS and WAAS
 - Perhaps using ham beacons at 20 and 10 meters
 - Perhaps using loran C at 100 kHz
 - Perhaps at VLF
 - Perhaps transmitting and receiving 10 meter beacons
 - Note potential for vertical sounding with earth reflection
- Sensor package tracking, and data readout
- Demo of formation data network and tracking using commercial technology such as bluetooth, 802.11, etc.

How might RRC help

- Reconfigurable radios
 - Developing reconfigurable sensor "brick"
 - Universities might use hardware for testing and development, but not planned to be radiation hard
 - Potentially share VHDL...e.g. turbodecoder
 - Signal processing software that runs on general purpose computers
 - Have permission to release M2K® for tracking and demodulating beacon. Extremely flexible software infrastructure
- Remotely controlled ground station network
 - Possibility for dual use of equipment, software, etc.